跳转至

Python | Tensorflow sinh()方法

原文:https://www.geesforgeks.org/python-tensorflow-sinh-method/

Tensorflow 是谷歌开发的开源机器学习库。其应用之一是开发深度神经网络。 模块 tensorflow.math 为许多基本的数学运算提供支持。函数 TF.sinh()[别名 tf.math.sinh]为 Tensorflow 中的双曲正弦函数提供支持。它需要弧度形式的输入。输入类型是张量,如果输入包含一个以上的元素,则计算元素方式的双曲正弦。

语法 : tf.sinh(x,name=None)或 tf.math.sinh(x,name=None) 参数 : x :以下任一类型的张量:float16、float32、float64、complex64 或 complex128。 名称(可选):操作的名称。 返回类型:与 x 类型相同的张量。

代码#1:

蟒蛇 3

# Importing the Tensorflow library
import tensorflow as tf

# A constant vector of size 6
a = tf.constant([1.0, -0.5, 3.4, -2.1, 0.0, -6.5],
                               dtype = tf.float32)

# Applying the sinh function and
# storing the result in 'b'
b = tf.sinh(a, name ='sinh')

# Initiating a Tensorflow session
with tf.Session() as sess:
    print('Input type:', a)
    print('Input:', sess.run(a))
    print('Return type:', b)
    print('Output:', sess.run(b))

输出:

Input type: Tensor("Const_3:0", shape=(6, ), dtype=float32)
Input: [ 1\.  -0.5  3.4 -2.1  0\.  -6.5]
Return type: Tensor("sinh:0", shape=(6, ), dtype=float32)
Output: [   1.1752012   -0.5210953   14.965365    -4.0218563    0.
 -332.57004  ]

代码#2: 可视化

蟒蛇 3

# Importing the Tensorflow library
import tensorflow as tf

# Importing the NumPy library
import numpy as np

# Importing the matplotlib.pyplot function
import matplotlib.pyplot as plt

# A vector of size 15 with values from -5 to 5
a = np.linspace(-5, 5, 15)

# Applying the hyperbolic sine function and
# storing the result in 'b'
b = tf.sinh(a, name ='sinh')

# Initiating a Tensorflow session
with tf.Session() as sess:
    print('Input:', a)
    print('Output:', sess.run(b))
    plt.plot(a, sess.run(b), color = 'red', marker = "o")
    plt.title("tensorflow.sinh")
    plt.xlabel("X")
    plt.ylabel("Y")

    plt.show()

输出:

Input: [-5\.         -4.28571429 -3.57142857 -2.85714286 -2.14285714 -1.42857143
 -0.71428571  0\.          0.71428571  1.42857143  2.14285714  2.85714286
  3.57142857  4.28571429  5\.        ]
Output: [-74.20321058 -36.32033021 -17.76962587  -8.67713772  -4.20321865
  -1.96654142  -0.77659271   0\.           0.77659271   1.96654142
   4.20321865   8.67713772  17.76962587  36.32033021  74.20321058]



回到顶部