Python | Tensorflow 倒数()方法
Tensorflow 是谷歌开发的开源机器学习库。其应用之一是开发深度神经网络。 模块 tensorflow.math 为许多基本的数学运算提供支持。函数 tf .倒数()[别名 tf.math .倒数]支持计算 Tensorflow 中输入的倒数。它期望以复数形式输入,浮点数和整数。输入类型是张量,如果输入包含一个以上的元素,则计算元素方向的倒数,。
语法 : tf .倒数(x,name=None)或 tf.math .倒数(x,name=None) 参数: x:bfloat 16、half、float32、float64、int32、int64、complex64 或 complex128 类型的张量。 名称(可选):操作的名称。 返回类型:与 x 相同大小和类型的张量。
代码#1:
蟒蛇 3
# Importing the Tensorflow library
import tensorflow as tf
# A constant vector of size 6
a = tf.constant([-0.5, -0.1, 0, 0.1, 0.5, 2], dtype = tf.float32)
# Applying the reciprocal function and
# storing the result in 'b'
b = tf.reciprocal(a, name ='reciprocal')
# Initiating a Tensorflow session
with tf.Session() as sess:
print('Input type:', a)
print('Input:', sess.run(a))
print('Return type:', b)
print('Output:', sess.run(b))
输出:
Input type: Tensor("Const:0", shape=(6, ), dtype=float32)
Input: [-0.5 -0.1 0\. 0.1 0.5 2\. ]
Return type: Tensor("reciprocal:0", shape=(6, ), dtype=float32)
Output: [ -2\. -10\. inf 10\. 2\. 0.5]
表示当输入趋近于零时,倒数趋近于无穷大。 T3】代码#2: 可视化
蟒蛇 3
# Importing the Tensorflow library
import tensorflow as tf
# Importing the NumPy library
import numpy as np
# Importing the matplotlib.pyplot function
import matplotlib.pyplot as plt
# Two vector each of size 20 with values from 0 to 10
a = np.linspace(0, 10, 20)
# Applying the reciprocal function and
# storing the result in 'b'
b = tf.reciprocal(a, name ='reciprocal')
# Initiating a Tensorflow session
with tf.Session() as sess:
print('Input:', a)
print('Output:', sess.run(b))
plt.plot(a, sess.run(b), color = 'red', marker ='o')
plt.title("tensorflow.reciprocal")
plt.xlabel("X")
plt.ylabel("Y")
plt.grid()
plt.show()
输出:
Input: [ 0\. 0.52631579 1.05263158 1.57894737 2.10526316 2.63157895
3.15789474 3.68421053 4.21052632 4.73684211 5.26315789 5.78947368
6.31578947 6.84210526 7.36842105 7.89473684 8.42105263 8.94736842
9.47368421 10\. ]
Output: [ inf 1.9 0.95 0.63333333 0.475 0.38
0.31666667 0.27142857 0.2375 0.21111111 0.19 0.17272727
0.15833333 0.14615385 0.13571429 0.12666667 0.11875 0.11176471
0.10555556 0.1 ]