跳转至

python–tensorlow.math.nextafter()

哎哎哎:# t0]https://www.geeksforgeeks.org/python-tensorlow-math-nextafter/

TensorFlow 是谷歌为开发机器学习模型和深度学习神经网络而设计的开源 python 库。 nextafter() 用于在 x2 方向上寻找元素 wisenext 的 x1 可表示值。

语法: tf.math.nextafter(x1,x2,name)

参数:

  • x1: 是输入张量。这个张量允许的数据类型是 float64,float32。
  • x2: 是与 x1 相同数据类型的输入张量。
  • 名称(可选):定义操作的名称。

返回: 它返回一个数据类型为 x1 的张量。

例 1:

蟒蛇 3

# Importing the library
import tensorflow as tf

# Initializing the input tensor
x1 = tf.constant([1, 2, -3, -4], dtype = tf.float64)
x2 = tf.constant([5, -7, 3, -8], dtype = tf.float64)

# Printing the input tensor
print('x1: ', x1)
print('x2: ', x2)

# Calculating result
res = tf.math.nextafter(x1, x2)

# Printing the result
print('Result: ', res)

输出:

x1:  tf.Tensor([ 1\.  2\. -3\. -4.], shape=(4, ), dtype=float64)
x2:  tf.Tensor([ 5\. -7\.  3\. -8.], shape=(4, ), dtype=float64)
Result:  tf.Tensor([ 1\.  2\. -3\. -4.], shape=(4, ), dtype=float64)

示例 2: 本示例对 x1 和 x2 使用不同的数据类型。它将引发无效的文档恐怖。

蟒蛇 3

# importing the library
import tensorflow as tf

# Initializing the input tensor
x1 = tf.constant([1, 2, -3, -4], dtype = tf.float64)
x2 = tf.constant([5, -7, 3, -8], dtype = tf.float32)

# Printing the input tensor
print('x1: ', x1)
print('x2: ', x2)

# Calculating result
res = tf.math.nextafter(x1, x2)

# Printing the result
print('Result: ', res)

输出:

x1:  tf.Tensor([ 1\.  2\. -3\. -4.], shape=(4, ), dtype=float64)
x2:  tf.Tensor([ 5\. -7\.  3\. -8.], shape=(4, ), dtype=float32)

---------------------------------------------------------------------------

InvalidArgumentError                      Traceback (most recent call last)

 in ()
      8 
      9 # Calculating result
---> 10 res = tf.math.nextafter(x1, x2)
     11 
     12 # Printing the result

2 frames

/usr/local/lib/python3.6/dist-packages/six.py in raise_from(value, from_value)

InvalidArgumentError: cannot compute NextAfter as input #1(zero-based) was expected to be a double tensor but is a float tensor [Op:NextAfter]



回到顶部