跳转至

Python–张量流。索引策略图属性

原文:https://www.geesforgeks.org/python-tensorflow-indexed slices-graph-attribute/

TensorFlow 是谷歌设计的开源 Python 库,用于开发机器学习模型和深度学习神经网络。

图形用于查找包含值、索引和形状张量的图形。

语法:张量流。索引策略.图表

返回:它返回一个图形实例。

例 1:

蟒蛇 3

# Importing the library
import tensorflow as tf

# Initializing the input
data = tf.constant([[1, 2, 3], [4, 5, 6]], dtype = tf.float32)

# Printing the input
print('data: ', data)

# Calculating result
res = tf.IndexedSlices(data, [0])

# Finding Graph
@tf.function
def gfg(): 
  tf.compat.v1.disable_eager_execution()

  graph = res.graph

  # Printing the result
  print('graph: ', graph)

gfg()

输出:


data:  Tensor("Const_1:0", shape=(2, 3), dtype=float32)
graph:  <tensorflow.python.framework.ops.Graph object at 0x7f2eeda9e630>

<tf.Operation 'PartitionedCall_1' type=PartitionedCall>

例 2:

蟒蛇 3

# Importing the library
import tensorflow as tf

# Initializing the input
data = tf.constant([1, 2, 3])

# Printing the input
print('data: ', data)

# Calculating result
res = tf.IndexedSlices(data, [0])

# Finding Graph 
graph = res.graph

# Printing the result
print('graph: ', graph)

输出:


data:  Tensor("Const_6:0", shape=(3, ), dtype=int32)
graph:  <tensorflow.python.framework.ops.Graph object at 0x7f2eeda9e630>



回到顶部