跳转至

Python | Tensorflow cosh()方法

原文:https://www.geesforgeks.org/python-tensorflow-cosh-method/

Tensorflow 是谷歌开发的开源机器学习库。其应用之一是开发深度神经网络。 模块 tensorflow.math 为许多基本的数学运算提供支持。函数 TF.cosh()[别名 tf.math.cosh]为 Tensorflow 中的双曲余弦函数提供支持。它需要弧度形式的输入。输入类型是张量,如果输入包含一个以上的元素,则按元素计算双曲余弦。

语法 : tf.cosh(x,name=None)或 tf.math.cosh(x,name=None) 参数 : x :以下任一类型的张量:float16、float32、float64、complex64 或 complex128。 名称(可选):操作的名称。 返回类型:与 x 类型相同的张量。

代码#1:

蟒蛇 3

# Importing the Tensorflow library
import tensorflow as tf

# A constant vector of size 6
a = tf.constant([1.0, -0.5, 3.4, -2.1, 0.0, -6.5],
                               dtype = tf.float32)

# Applying the cosh function and
# storing the result in 'b'
b = tf.cosh(a, name ='cosh')

# Initiating a Tensorflow session
with tf.Session() as sess:
    print('Input type:', a)
    print('Input:', sess.run(a))
    print('Return type:', b)
    print('Output:', sess.run(b))

输出:

Input type: Tensor("Const_2:0", shape=(6, ), dtype=float32)
Input: [ 1\.  -0.5  3.4 -2.1  0\.  -6.5]
Return type: Tensor("cosh_1:0", shape=(6, ), dtype=float32)
Output: [  1.5430806   1.127626   14.998738    4.144313    1\.        332.5716   ]

代码#2: 可视化

蟒蛇 3

# Importing the Tensorflow library
import tensorflow as tf

# Importing the NumPy library
import numpy as np

# Importing the matplotlib.pyplot function
import matplotlib.pyplot as plt

# A vector of size 15 with values from -1 to 1
a = np.linspace(-1, 1, 15)

# Applying the hyperbolic cosine function and
# storing the result in 'b'
b = tf.cosh(a, name ='cosh')

# Initiating a Tensorflow session
with tf.Session() as sess:
    print('Input:', a)
    print('Output:', sess.run(b))
    plt.plot(a, sess.run(b), color = 'red', marker = "o")
    plt.title("tensorflow.cosh")
    plt.xlabel("X")
    plt.ylabel("Y")

    plt.show()

输出:

Input: [-1\.         -0.85714286 -0.71428571 -0.57142857 -0.42857143 -0.28571429
 -0.14285714  0\.          0.14285714  0.28571429  0.42857143  0.57142857
  0.71428571  0.85714286  1\.        ]
Output: [1.54308063 1.39039564 1.26613436 1.16775654 1.09325103 1.04109475
 1.01022145 1\.         1.01022145 1.04109475 1.09325103 1.16775654
 1.26613436 1.39039564 1.54308063]



回到顶部