Python | Tensorflow asin()方法
哎哎哎:# t0]https://www.geeksforgeeks.org/python-tensorlow-asin 方法/
Tensorflow 是谷歌开发的开源机器学习库。其应用之一是开发深度神经网络。 模块 tensorflow.math 为许多基本的数学运算提供支持。函数 TF.asin()[别名 tf.math.asin]为 Tensorflow 中的逆正弦函数提供支持。它期望输入在[-1,1]范围内,并以弧度形式给出输出。如果输入不在范围[-1,1]内,则返回 nan 。输入类型是张量,如果输入包含一个以上的元素,则计算元素反正弦。
语法 : tf.asin(x,name=None)或 tf.math.asin(x,name=None) 参数 : x :以下任一类型的张量:bfloat16、half、float32、float64、int32、int64、complex64 或 complex128。 名称(可选):操作的名称。 返回类型:与 x 类型相同的张量。
代码#1:
蟒蛇 3
# Importing the Tensorflow library
import tensorflow as tf
# A constant vector of size 6
a = tf.constant([1.0, -0.5, 3.4, 0.2, 0.0, -2],
dtype = tf.float32)
# Applying the asin function and
# storing the result in 'b'
b = tf.asin(a, name ='asin')
# Initiating a Tensorflow session
with tf.Session() as sess:
print('Input type:', a)
print('Input:', sess.run(a))
print('Return type:', b)
print('Output:', sess.run(b))
输出:
Input type: Tensor("Const_6:0", shape=(6, ), dtype=float32)
Input: [ 1\. -0.5 3.4 0.2 0\. -2\. ]
Return type: Tensor("asin_2:0", shape=(6, ), dtype=float32)
Output: [ 1.5707964 -0.5235988 nan 0.20135793 0\. nan]
代码#2: 可视化
蟒蛇 3
# Importing the Tensorflow library
import tensorflow as tf
# Importing the NumPy library
import numpy as np
# Importing the matplotlib.pyplot function
import matplotlib.pyplot as plt
# A vector of size 15 with values from -1 to 1
a = np.linspace(-1, 1, 15)
# Applying the inverse sine function and
# storing the result in 'b'
b = tf.asin(a, name ='asin')
# Initiating a Tensorflow session
with tf.Session() as sess:
print('Input:', a)
print('Output:', sess.run(b))
plt.plot(a, sess.run(b), color = 'red', marker = "o")
plt.title("tensorflow.asin")
plt.xlabel("X")
plt.ylabel("Y")
plt.show()
输出:
Input: [-1\. -0.85714286 -0.71428571 -0.57142857 -0.42857143 -0.28571429
-0.14285714 0\. 0.14285714 0.28571429 0.42857143 0.57142857
0.71428571 0.85714286 1\. ]
Output: [-1.57079633 -1.0296968 -0.79560295 -0.60824558 -0.44291104 -0.2897517
-0.14334757 0\. 0.14334757 0.2897517 0.44291104 0.60824558
0.79560295 1.0296968 1.57079633]